On the Large-Scale Structure of the Moduli of Eigenmaps and Spherical Minimal Immersions

نویسنده

  • Gabor Toth
چکیده

Minimal immersions of a compact Riemannian homogeneous manifold into round spheres, or spherical minimal immersions for short, or “spherical soap bubbles,” belong to a fast growing and fascinating area between algebra and geometry. This theory has rich interconnections with a variety of mathematical disciplines such as representation theory, convex geometry, harmonic maps, minimal surfaces, and orthogonal multiplications. In this survey we browse thorugh some of the developments of the theory in the last thirtysome years.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Points of the Distance Function on the Moduli Space for Spherical Eigenmaps and Minimal Immersions

The boundary of a DoCarmo-Wallach moduli space parametrizing (harmonic) eigenmaps between spheres or spherical minimal immersions carries a natural stratification. In this paper we study the critical points of the distance function on the boundary strata. We show that the critical points provide a natural generalization of eigenmaps with L-orthonormal components. We also point out that many cla...

متن کامل

Moduli for Spherical Eigenmaps and Minimal Immersions

Eigenmaps and spherical minimal immersions of round spheres into round spheres form an interesting subject that has been studied by many authors. The components of an eigenmap are eigenfunctions of the Laplace-Beltrami operator on Sm, the Euclidean m-sphere, m ≥ 2; and the eigenfunctions correspond to a fixed eigenvalue λk, k ≥ 1. Given m ≥ 2 and k ≥ 1, these eigenmaps can be parametrized by a ...

متن کامل

On the Structure of Convex Sets with Applications to the Moduli of Spherical Minimal Immersions

We study the properties of certain affine invariant measures of symmetry associated to a compact convex body L in a Euclidean vector space. As functions of the interior of L, these measures of symmetry are proved or disproved to be concave in specific situations, notably for the reduced moduli of spherical minimal immersions. MSC 2000: 53C42

متن کامل

Minimal Immersions of Spheres and Moduli

Minimal immersions of round spheres into round spheres, or spherical minimal immersions for short, or “spherical soap bubbles”, belong to a fast growing and fascinating area between algebra and geometry. This theory has rich interconnections with a variety of mathematical disciplines such as invariant theory, convex geometry, harmonic maps, and orthogonal multiplications. In this survey article...

متن کامل

Spherical Minimal Immersions of the 3-sphere

In 1966 Takahashi [11] proved that a minimal isometric immersion f : S(1) → S(r) of round spheres exists iff r = √ m/λp, where λp is the pth eigenvalue of the Laplacian on S; in this case, the components of f are spherical harmonics on S of order p. This immersion is unique up to congruence on the range and agrees with the generalized Veronese map if m = 2 as was shown in 1967 by Calabi [1]. In...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014